3.133 \(\int \frac{\sqrt{e \tan (c+d x)}}{(a+a \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=363 \[ -\frac{4 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}-\frac{\sqrt{e} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}+\frac{\sqrt{e} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} a^2 d}+\frac{2 e}{a^2 d \sqrt{e \tan (c+d x)}}+\frac{\sqrt{e} \log \left (\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d}-\frac{\sqrt{e} \log \left (\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d}-\frac{12 e \cos (c+d x)}{5 a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 \cos (c+d x) E\left (\left .c+d x-\frac{\pi }{4}\right |2\right ) \sqrt{e \tan (c+d x)}}{5 a^2 d \sqrt{\sin (2 c+2 d x)}} \]

[Out]

-((Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*a^2*d)) + (Sqrt[e]*ArcTan[1 + (Sqrt[2]
*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*a^2*d) + (Sqrt[e]*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[
e*Tan[c + d*x]]])/(2*Sqrt[2]*a^2*d) - (Sqrt[e]*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x
]]])/(2*Sqrt[2]*a^2*d) - (4*e^3)/(5*a^2*d*(e*Tan[c + d*x])^(5/2)) + (4*e^3*Sec[c + d*x])/(5*a^2*d*(e*Tan[c + d
*x])^(5/2)) + (2*e)/(a^2*d*Sqrt[e*Tan[c + d*x]]) - (12*e*Cos[c + d*x])/(5*a^2*d*Sqrt[e*Tan[c + d*x]]) - (12*Co
s[c + d*x]*EllipticE[c - Pi/4 + d*x, 2]*Sqrt[e*Tan[c + d*x]])/(5*a^2*d*Sqrt[Sin[2*c + 2*d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.524864, antiderivative size = 363, normalized size of antiderivative = 1., number of steps used = 23, number of rules used = 18, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.72, Rules used = {3888, 3886, 3474, 3476, 329, 297, 1162, 617, 204, 1165, 628, 2609, 2608, 2615, 2572, 2639, 2607, 32} \[ -\frac{4 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}-\frac{\sqrt{e} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}+\frac{\sqrt{e} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} a^2 d}+\frac{2 e}{a^2 d \sqrt{e \tan (c+d x)}}+\frac{\sqrt{e} \log \left (\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d}-\frac{\sqrt{e} \log \left (\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d}-\frac{12 e \cos (c+d x)}{5 a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 \cos (c+d x) E\left (\left .c+d x-\frac{\pi }{4}\right |2\right ) \sqrt{e \tan (c+d x)}}{5 a^2 d \sqrt{\sin (2 c+2 d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Tan[c + d*x]]/(a + a*Sec[c + d*x])^2,x]

[Out]

-((Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*a^2*d)) + (Sqrt[e]*ArcTan[1 + (Sqrt[2]
*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*a^2*d) + (Sqrt[e]*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[
e*Tan[c + d*x]]])/(2*Sqrt[2]*a^2*d) - (Sqrt[e]*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x
]]])/(2*Sqrt[2]*a^2*d) - (4*e^3)/(5*a^2*d*(e*Tan[c + d*x])^(5/2)) + (4*e^3*Sec[c + d*x])/(5*a^2*d*(e*Tan[c + d
*x])^(5/2)) + (2*e)/(a^2*d*Sqrt[e*Tan[c + d*x]]) - (12*e*Cos[c + d*x])/(5*a^2*d*Sqrt[e*Tan[c + d*x]]) - (12*Co
s[c + d*x]*EllipticE[c - Pi/4 + d*x, 2]*Sqrt[e*Tan[c + d*x]])/(5*a^2*d*Sqrt[Sin[2*c + 2*d*x]])

Rule 3888

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^(2*n
)/e^(2*n), Int[(e*Cot[c + d*x])^(m + 2*n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && E
qQ[a^2 - b^2, 0] && ILtQ[n, 0]

Rule 3886

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandI
ntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]

Rule 3474

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 2609

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*Sec[e +
f*x])^m*(b*Tan[e + f*x])^(n + 1))/(b*f*(n + 1)), x] - Dist[(m + n + 1)/(b^2*(n + 1)), Int[(a*Sec[e + f*x])^m*(
b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && IntegersQ[2*m, 2*n]

Rule 2608

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a^2*(a*Sec[
e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 1))/(b*f*(n + 1)), x] - Dist[(a^2*(m - 2))/(b^2*(n + 1)), Int[(a*Sec[e
 + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && (GtQ[m, 1] || (Eq
Q[m, 1] && EqQ[n, -3/2])) && IntegersQ[2*m, 2*n]

Rule 2615

Int[Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]]/sec[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[(Sqrt[Cos[e + f*x]]*Sqrt[b*
Tan[e + f*x]])/Sqrt[Sin[e + f*x]], Int[Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]], x], x] /; FreeQ[{b, e, f}, x]

Rule 2572

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(Sqrt[a*Sin[e +
 f*x]]*Sqrt[b*Cos[e + f*x]])/Sqrt[Sin[2*e + 2*f*x]], Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{\sqrt{e \tan (c+d x)}}{(a+a \sec (c+d x))^2} \, dx &=\frac{e^4 \int \frac{(-a+a \sec (c+d x))^2}{(e \tan (c+d x))^{7/2}} \, dx}{a^4}\\ &=\frac{e^4 \int \left (\frac{a^2}{(e \tan (c+d x))^{7/2}}-\frac{2 a^2 \sec (c+d x)}{(e \tan (c+d x))^{7/2}}+\frac{a^2 \sec ^2(c+d x)}{(e \tan (c+d x))^{7/2}}\right ) \, dx}{a^4}\\ &=\frac{e^4 \int \frac{1}{(e \tan (c+d x))^{7/2}} \, dx}{a^2}+\frac{e^4 \int \frac{\sec ^2(c+d x)}{(e \tan (c+d x))^{7/2}} \, dx}{a^2}-\frac{\left (2 e^4\right ) \int \frac{\sec (c+d x)}{(e \tan (c+d x))^{7/2}} \, dx}{a^2}\\ &=-\frac{2 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}-\frac{e^2 \int \frac{1}{(e \tan (c+d x))^{3/2}} \, dx}{a^2}+\frac{\left (6 e^2\right ) \int \frac{\sec (c+d x)}{(e \tan (c+d x))^{3/2}} \, dx}{5 a^2}+\frac{e^4 \operatorname{Subst}\left (\int \frac{1}{(e x)^{7/2}} \, dx,x,\tan (c+d x)\right )}{a^2 d}\\ &=-\frac{4 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{2 e}{a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 e \cos (c+d x)}{5 a^2 d \sqrt{e \tan (c+d x)}}+\frac{\int \sqrt{e \tan (c+d x)} \, dx}{a^2}-\frac{12 \int \cos (c+d x) \sqrt{e \tan (c+d x)} \, dx}{5 a^2}\\ &=-\frac{4 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{2 e}{a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 e \cos (c+d x)}{5 a^2 d \sqrt{e \tan (c+d x)}}+\frac{e \operatorname{Subst}\left (\int \frac{\sqrt{x}}{e^2+x^2} \, dx,x,e \tan (c+d x)\right )}{a^2 d}-\frac{\left (12 \sqrt{\cos (c+d x)} \sqrt{e \tan (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \sqrt{\sin (c+d x)} \, dx}{5 a^2 \sqrt{\sin (c+d x)}}\\ &=-\frac{4 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{2 e}{a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 e \cos (c+d x)}{5 a^2 d \sqrt{e \tan (c+d x)}}+\frac{(2 e) \operatorname{Subst}\left (\int \frac{x^2}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{a^2 d}-\frac{\left (12 \cos (c+d x) \sqrt{e \tan (c+d x)}\right ) \int \sqrt{\sin (2 c+2 d x)} \, dx}{5 a^2 \sqrt{\sin (2 c+2 d x)}}\\ &=-\frac{4 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{2 e}{a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 e \cos (c+d x)}{5 a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 \cos (c+d x) E\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{e \tan (c+d x)}}{5 a^2 d \sqrt{\sin (2 c+2 d x)}}-\frac{e \operatorname{Subst}\left (\int \frac{e-x^2}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{a^2 d}+\frac{e \operatorname{Subst}\left (\int \frac{e+x^2}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{a^2 d}\\ &=-\frac{4 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{2 e}{a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 e \cos (c+d x)}{5 a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 \cos (c+d x) E\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{e \tan (c+d x)}}{5 a^2 d \sqrt{\sin (2 c+2 d x)}}+\frac{\sqrt{e} \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}+2 x}{-e-\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}+\frac{\sqrt{e} \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}-2 x}{-e+\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}+\frac{e \operatorname{Subst}\left (\int \frac{1}{e-\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 a^2 d}+\frac{e \operatorname{Subst}\left (\int \frac{1}{e+\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 a^2 d}\\ &=\frac{\sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}-\frac{\sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}-\frac{4 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{2 e}{a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 e \cos (c+d x)}{5 a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 \cos (c+d x) E\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{e \tan (c+d x)}}{5 a^2 d \sqrt{\sin (2 c+2 d x)}}+\frac{\sqrt{e} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}-\frac{\sqrt{e} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}\\ &=-\frac{\sqrt{e} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}+\frac{\sqrt{e} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}+\frac{\sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}-\frac{\sqrt{e} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}-\frac{4 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac{2 e}{a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 e \cos (c+d x)}{5 a^2 d \sqrt{e \tan (c+d x)}}-\frac{12 \cos (c+d x) E\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sqrt{e \tan (c+d x)}}{5 a^2 d \sqrt{\sin (2 c+2 d x)}}\\ \end{align*}

Mathematica [C]  time = 8.30026, size = 2792, normalized size = 7.69 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[e*Tan[c + d*x]]/(a + a*Sec[c + d*x])^2,x]

[Out]

(Cos[c/2 + (d*x)/2]^4*Sec[c + d*x]^2*((-24*Cos[c/2]*Cos[d*x]*Sec[2*c]*(4*Sin[c/2] + Sin[(3*c)/2] + Sin[(5*c)/2
]))/(5*d*(1 + 2*Cos[c])) - (56*Sec[c/2]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2])/(5*d) + (4*Sec[c/2]*Sec[c/2 + (d*x)/2
]^3*Sin[(d*x)/2])/(5*d) - (12*(-2 - 5*Cos[c] - 6*Cos[2*c] + Cos[3*c])*Sec[2*c]*Sin[d*x])/(5*d*(1 + 2*Cos[c]))
- (56*Tan[c/2])/(5*d) + (4*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(5*d))*Sqrt[e*Tan[c + d*x]])/(a + a*Sec[c + d*x])^2
+ ((E^((2*I)*c)*Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 + E^((4*I)*(c + d*x))]] - 2*Sqrt[-1 + E^((2*I)*(
c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])*
Cos[c/2 + (d*x)/2]^4*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d*x]])/(d*E^(I*c)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d
*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))*(1 + 2*Cos[c])*(a + a*Sec[c + d*x])^2*Sqrt[Tan[c +
 d*x]]) - ((-(E^((4*I)*c)*Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 + E^((4*I)*(c + d*x))]]) + 2*Sqrt[-1 +
 E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c +
 d*x)))]])*Cos[c/2 + (d*x)/2]^4*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d*x]])/(d*E^((2*I)*c)*Sqrt[((-I)*(-1 +
E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))*(1 + 2*Cos[c])*(a + a*Sec[c + d*x])
^2*Sqrt[Tan[c + d*x]]) - ((-(E^((6*I)*c)*Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 + E^((4*I)*(c + d*x))]]
) + 2*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1
+ E^((2*I)*(c + d*x)))]])*Cos[c/2 + (d*x)/2]^4*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d*x]])/(d*E^((3*I)*c)*Sq
rt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))*(1 + 2*Cos[c])*(a +
a*Sec[c + d*x])^2*Sqrt[Tan[c + d*x]]) + ((Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 + E^((4*I)*(c + d*x))]
] - 2*E^((2*I)*c)*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[(-1 + E^((2*I)*(c
+ d*x)))/(1 + E^((2*I)*(c + d*x)))]])*Cos[c/2 + (d*x)/2]^4*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d*x]])/(d*E^
(I*c)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))*(1 + 2*Cos[c
])*(a + a*Sec[c + d*x])^2*Sqrt[Tan[c + d*x]]) + ((Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 + E^((4*I)*(c
+ d*x))]] - 2*E^((4*I)*c)*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[(-1 + E^((
2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])*Cos[c/2 + (d*x)/2]^4*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d*x]
])/(d*E^((2*I)*c)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))*
(1 + 2*Cos[c])*(a + a*Sec[c + d*x])^2*Sqrt[Tan[c + d*x]]) + ((Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 +
E^((4*I)*(c + d*x))]] - 2*E^((6*I)*c)*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqr
t[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])*Cos[c/2 + (d*x)/2]^4*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*
Tan[c + d*x]])/(d*E^((3*I)*c)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*
(c + d*x)))*(1 + 2*Cos[c])*(a + a*Sec[c + d*x])^2*Sqrt[Tan[c + d*x]]) + (4*Cos[c/2 + (d*x)/2]^4*(3 - 3*E^((4*I
)*(c + d*x)) + E^((4*I)*(c + d*x))*(1 + E^((2*I)*c))*Sqrt[1 - E^((4*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4,
 7/4, E^((4*I)*(c + d*x))])*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d*x]])/(5*d*E^(I*(2*c + d*x))*Sqrt[((-I)*(-
1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))*(1 + 2*Cos[c])*(a + a*Sec[c + d
*x])^2*Sqrt[Tan[c + d*x]]) + (4*Cos[c/2 + (d*x)/2]^4*(3 - 3*E^((4*I)*(c + d*x)) + E^((2*I)*(c + 2*d*x))*(1 + E
^((2*I)*c))*Sqrt[1 - E^((4*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, E^((4*I)*(c + d*x))])*Sec[2*c]*Sec[
c + d*x]^2*Sqrt[e*Tan[c + d*x]])/(5*d*E^(I*d*x)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)
))]*(1 + E^((2*I)*(c + d*x)))*(1 + 2*Cos[c])*(a + a*Sec[c + d*x])^2*Sqrt[Tan[c + d*x]]) + (2*E^(I*(c - d*x))*C
os[c/2 + (d*x)/2]^4*(3 - 3*E^((4*I)*(c + d*x)) + E^((4*I)*d*x)*(1 + E^((4*I)*c))*Sqrt[1 - E^((4*I)*(c + d*x))]
*Hypergeometric2F1[1/2, 3/4, 7/4, E^((4*I)*(c + d*x))])*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d*x]])/(d*Sqrt[
((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))*(1 + 2*Cos[c])*(a + a*S
ec[c + d*x])^2*Sqrt[Tan[c + d*x]]) - (2*Cos[c/2 + (d*x)/2]^4*(3 - 3*E^((4*I)*(c + d*x)) + E^((4*I)*(c + d*x))*
(1 + E^((4*I)*c))*Sqrt[1 - E^((4*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, E^((4*I)*(c + d*x))])*Sec[2*c
]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d*x]])/(5*d*E^(I*(3*c + d*x))*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((
2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)))*(1 + 2*Cos[c])*(a + a*Sec[c + d*x])^2*Sqrt[Tan[c + d*x]]) + (8*Cos
[c/2 + (d*x)/2]^4*(-3*E^((2*I)*c)*(-1 + E^((4*I)*(c + d*x))) + E^((4*I)*d*x)*(1 + E^((6*I)*c))*Sqrt[1 - E^((4*
I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, E^((4*I)*(c + d*x))])*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d
*x]])/(5*d*E^(I*d*x)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2*I)*(c + d*x)
))*(1 + 2*Cos[c])*(a + a*Sec[c + d*x])^2*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

Maple [C]  time = 0.299, size = 2117, normalized size = 5.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c))^2,x)

[Out]

-1/10/a^2/d*2^(1/2)*(e*sin(d*x+c)/cos(d*x+c))^(1/2)*(cos(d*x+c)+1)^2*(-1+cos(d*x+c))^3*(-5*I*cos(d*x+c)^2*((1-
cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*
x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-10*I*cos(d*x+c)*((-
1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d
*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+10*I*((1-cos(d*x+c
)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/
2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*cos(d*x+c)+5*I*cos(d*x+c)^2*
((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/si
n(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))-5*((-1+cos(d*x+
c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/
2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*cos(d*x+c)^2-5*((-1+cos(d*x+
c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/
2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*cos(d*x+c)^2+24*((-1+cos(d*x
+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1
/2)*EllipticE(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)^2-12*((-1+cos(d*x+c))/sin(d
*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*Ellipt
icF(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c)^2+5*I*((1-cos(d*x+c)+sin(d*x+c))/sin(
d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-
cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))-5*I*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/
2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+
sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-10*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2
)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+s
in(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))-10*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)
*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+si
n(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+48*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*
((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticE(((1-cos(d*x+c)+sin(
d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-24*cos(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x
+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF(((1-cos(d*x+c)+sin(d*x+c))/sin(
d*x+c))^(1/2),1/2*2^(1/2))-5*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+
c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I
,1/2*2^(1/2))-5*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-
1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))
+24*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)
)/sin(d*x+c))^(1/2)*EllipticE(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-12*((1-cos(d*x+c)+sin(
d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*Ell
ipticF(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))+2*cos(d*x+c)^2*2^(1/2)-2*cos(d*x+c)*2^(1/2))/
sin(d*x+c)^7

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e \tan \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sqrt(e*tan(d*x + c))/(a*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\sqrt{e \tan{\left (c + d x \right )}}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec{\left (c + d x \right )} + 1}\, dx}{a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))**(1/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Integral(sqrt(e*tan(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x)/a**2

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e \tan \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sqrt(e*tan(d*x + c))/(a*sec(d*x + c) + a)^2, x)